• / 63
  • 下载费用:5 赏金  

面向检索的多视觉特征融合.pdf

关 键 词:
图像检索 视觉特征 特征融合 图模型 自适应加权
资源描述:
近几十年来,伴随着互联网的快速发展以及智能终端的普及,互联网上数字图像的数量呈现爆炸式增长。面对海量的图像信息,如何快速高效地检索这些图像一直是学术界和工业界研究的热点课题。图像的特征表达是基于内容的图像检索的最基本问题之一。为了提升检索的准确度,研究人员从颜色、纹理等不同的角度提出不同的视觉特征表达来表征图像。选择不同的视觉特征对于图像检索的准确度有很大的影响。一般来说,采用具有一定互补性的多种特征进行融合是提升图像检索准确度的一种方法。  为了把基于不同特征得到的图像检索结果融合在一起,我们有两个关键的问题需要解决。  第一个关键问题是如何使基于不同特征空间的距离度量是可比拟的。因为通常使用不同的特征,如SIFT,HSV,CNN特征,算得的距离是不在一个尺度空间的。直接把不在一个尺度空间的“距离”进行相加是不合适的。  第二个需要关注的关键的问题是,如何自适应的度量不同的特征的有效性。因为对于某些查询图像来说,局部特征就能取得较好的检索结果。然而对于另外某些查询图像,用全局特征比如CNN特征才能够得到比较好的检索结果。对于同一个查询图像,我们需要比较并量化不同特征的有效性。  基于上面的两个关键点,我们的工作主要归纳如下:  (1)基于图模型的自适应加权特征融合方法。在此方法中,图模型把本来在不同尺度空间的距离度量,都统一到一个Graph里面,并用统一的度量方法Jaccard系数来度量各个图片之间的相似度。同时为了衡量不同特征的有效性,我们使用PageRank算法对不同特征构建的图进行分析,并根据最后得到的PageRank值的分布来衡量不同特征的有效性。最后根据特征对特定检索图像的有效性,完成不同特征构建的图的自适应加权融合。根据最后融合得到的图,我们解出最后的图片检索排序。  (2)基于邻域相似度分布的自适应多特征融合方法。该方法是根据图像在给定的视觉特征下的近邻空间的分布情况,来进行特征融合。不同特征对于一个具体的查询图像得到的k近邻的距离空间分布是不一样的。我们通过探索k近邻的空间分布特性,来进行衡量不同特征的有效性。我们提出了有效性系数的概念——REC(RankEffectivenessCoefficient)。REC反映了一个特征对一个具体图像的有效性。通过有效性系数对原来特征的相似度进行加权融合,最后得到融合后的相似度得分。根据融合后的相似度得分,可以给出最后的图像检索排序结果。
展开阅读全文
  众赏文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:面向检索的多视觉特征融合.pdf
链接地址:https://www.xueshudoc.com/p-819566.html

当前资源信息

编号: 20190306234308863

作者: *****

导师: *****

授予单位: *****

学位: *****

学科专业: *****

年度: *****

在线出版: 2017/8/28 0:00:00

本文目录

    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

    浙公网安备 33010902002192号

    众赏文库提供毕业设计,机械图纸源码,实习报告等文档下载

    收起
    展开